Campus Recruitment-Topic Mensuration- Question and Answers

   

Quantitative Questions on Mensuration for Campus Recruitment Tests

What is Campus Recruitment Process? 

Generally, a Campus Placement Process has four components:

 * Pre Placement Talk 

 * Aptitude test 

 * Group Discussion 

 * Interview which can be various combinations of Technical and HR rounds 

Aptitude Test for Placements: 

The Aptitude test consists of basic problems in quantitative ability, logical reasoning, and verbal ability. The primary objective of this test is to check the problem-solving skills of the test-taker. Any job out there is the problem-solving skills. It is essential to understand what the problem is and how the problem should be solved. So, the application of the learning is the Aptitude test

Take a Free Campus Placement Mock Test

Please read the below blogs to know the detailed campus recruitment process of respective companies 
 

Tips and Tricks to solve the Mensuration Questions for Campus Recruitment Test

  • If you want to stand out & beat the competition in your Campus Placements, the first step is to ace the Written Aptitude Test. Quantitative Aptitude contributes a lot to increase your scores. No aptitude test is complete without questions based on Ratios & Averages
  • Methods of learning in one chapter can be used in other chapters
  • Whether the Question is simple or difficult you can know the options.
  • Focus on all areas in quantitative will help you crack quantitative section

Watch the below video to learn Tips & Tricks to crack Questions on Mensuration in Campus Recruitment Exams

The Following questions are based on Mensuration:

Equilateral Triangle -Perimeter to Area:

1. The perimeter of an equilateral triangle is 24√3 cm what is the height in(cm)?

A. 6

B. 8

C.12

D.15

E.18

Answer: C

Explanation:

The perimeter of the equilateral triangle =3a

3a=24√3a

a=8√3

The height of the equilateral triangle= 

=(√3/2)*(8√3)=24/2=12.

Area of a triangle-Observation:

2. The area of a triangle whose sides are 9cm,40cm,41cm is  __ sq.cm?

A. 120

B. 150

C. 180

D. 210

E. 240

Answer: C

Explanation:

Method-1:

Δ=√s(s-a) (s-b) (s-c)

s=(a+b+c)/2=45 cm

Δ=√45*36*5*4

Δ=15*6*2=180sqcm.

Method-2:

These are the vertices of the right-angled triangle.

Area of the right-angled triangle=1/2*9*40=180.

Linking r, Δ, and s:

3. The perimeter of a triangle is 18cm. The radius of a circle that is inscribed in the triangle is 5 cm. what is the area of the triangle?

A. 45cm

B. 54cm

C. 90cm

D. 180cm

E. 240cm

Answer: A

Explanation:

r= Inradius in a triangle

Δ= Area

s= Semiperimeter>

r=Δ/s

5=Δ/9

Δ=9*5=45cm

Square: Finding area from Diagonal

4. A boy walks 14 meters to cross a square field along its diagonal. What is the area of the field(approx)?

A. 100sqm

B. 110sqm

D. cannot be determined

Answer: A

Explanation:

 

102b5575 1dbf 4d3a 958f D49d822cb10a

d=14

d=√2*a

a=14/√2=7√2

Area=a2

a²=(7√2)²=49*2=98sqm

Linking two figures: Square and circle

5. The diameter of a circle equals the perimeter of a square with the area is 3969cm². what is the circumference of the circle?

A. 396 cm

B. 792cm

C. 1188cm

D. 1584cm

Answer: B

Explanation: 

The diameter of the circle=2r

The perimeter of a square= 4*a

2r=4*a

2r=4*√3969

2r=4*63

The circumference of the circle=2Πr

2ΠR=4*63*22/7

       =36*22

       =792cm

Rectangle: Using the ratio of Length and Breadth

6. The cost of leveling a rectangular piece of land came to Rs.756 when the contractor charged Rs.6 per square meter. The length and breadth of the field are in the ratio of 7:2. What is the perimeter of the rectangle?

A. 36m

B. 45m

C. 63m

D. 54m

E. none of the above

Answer: D

Explanation: 

Area of the rectangle(A)*6=756

A=756/6=126sqm

length:breadth=7x:2x

Area=7x*2x=126

x²=14*9/7*2

x=3

The Perimeter of a rectangle=2(7x+2x)

                                              =18x

                                              =18*3=54m

7. The perimeter of a rectangle is 220m. Its length is 75% more than its breadth.what is the area(in sq.units)?

A. 1400

B. 2800

C. 4200

D. 5600

Answer: B

Explanation:

Let us assume that breadth=b

The Length=1.75b

The perimeter of the rectangle=2(l+b)

2(l+b)=220m

2(b+1.75b)=220m

b(2.75)=110m

b=110/2.75=110*4/11=40m

Area=40*(1.75*40)

        =40*70=2800sqm.

Conversion: square to circle

8. When a wire is bent in the form of a square, it encloses an area of 484sqcm. what will be the area of the figure formed when the same wire is bent to form a circle?

A. 484sqm

B. 576sqm

C. 616sqm

D. 154sqm

E. 308sqm

Answer: C

Explanation:

When a wire is bent in the form of a square

The Length of the wire= perimeter of the square

                                    = Circumference of the circle

a²=484

a=22cm

The perimeter of the square= Circumference of the circle

4*a=2Πr

4*22=2*22/7*r

r=14cm

The area of the circle=Πr²

                                  =22/7*14*14=616sqm

The Largest rectangle in a circle:

9. The area of the largest rectangle that can be inscribed in a particular circle 784sqcm. what is the area of a circle?

A. 1112sqcm

B. 1200sqcm 

C. 1232sqcm

D. 1252sqcm

E. 1300sqcm

Answer: C

Explanation:

 

D9867297 761a 4ad9 926f Ad7ed0560366

 The Diameter of the circle= The diagonal of the rectangle

The rectangle is divided into two right-angled triangles.

If the rectangle has the maximum area then the triangle has the maximum area.

The largest rectangle is always square.

a²=784

a=28cm

d=28√2=diameter of the circle.

r=14√2

The area of the circle=Πr²=(22/7)*(14√2)²

                                         =22/7*14*14*2

                                         =22*28*2

                                        =1232sqcm

The area of compound figures:

10. The shape of the field is such that it is bound by straight lines on three sides and a concave semi-circle on the fourth side. The three linear edges from three of the sides of a rectangle with sides measuring 30m*14m. The diameter of the semi-circular portion equals the shorter side of the rectangle.what is the area of the field (sq.mts)?

A. 420

B. 497

C. 574

D. 723

Answer: B

Explanation:

8762e9c2 F05f 4c0c 8847 0ef2ceb65fcb

 

Part1= Area of the rectangle =14*30=420sqm

Part2=Area of the semicircle=(1/2)*Πr²=(1/2)*22/7*7*7=77

                                                              =420+77=497sqm

The Area of the quadrilateral-general form:

11. The length of one of the diagonals of a quadrilateral is 18cm and the length of the offsets drawn to this diagonal from the other two vertices measure 5.4cm and 3.6cm. The area of the quadrilateral is___sqcm

A. 54 

B. 72

C. 81

D.105

E. 121

Answer: C

Explanation:

 

487f16e9 0fb1 4081 Aee4 Cdc47a2b82ea The area of the quadrilateral=area of the two triangle

                                               =(1/2)*18*5.4+1/2*18*3.6

                                                =1/2*18(5.4+3.6)

                                                = 9*9=81sqcm

The quadrilateral with perpendicular diagonals:

12. The two diagonals of a quadrilateral are perpendicular to each other measure 8cm and 12cm what its area(in sq cm)?

A. 24

B. 36

C. 42

D. 48

E. 96 

Answer: D

Explanation:

6441e2d1 8619 4d7d B166 B48193b9c9c2

 

Area of the Quadrilateral=1/2*d*(h1+h2)

                                        =1/2*AC*(8-y+y)

                                         =1/2*12*8=48sqcm

where d=diagonal

h1&h2 both are perpendiculars

If the diagonals are perpendicular in Quadrilateral then 

area=1/2*d1*d2

Area of a Cyclic Quadrilateral:

 13. A quadrilateral whose sides measures 5cm, 15cm, 25cm and 30cm is inscribed in a circle. The area of the quadrilateral is ___ sq cm

A. 20

B. 40

C. 805

D. 25105

E. 3575 

Answer: D

Explanation:

The area cyclic Quadrilateral=Aca      

Aca= √s (s-a) (s-b) (s-c) (s-d)

s=(a+b+c+d)/2

The cyclic Quadrilateral is a Quadrilateral whose vertices lies on the circumference of a circle.

s=(15+5+25+35)/2=40cm

  Aca= √35*15*25*5

       =25105             

The area of a parallelogram:      

14. Two sides of a parallelogram measure 15cm and 18cm while one of the diagonals measures 17cm. The area of the parallelogram is _____ sq.cm

A. 60

B. 90

C. 120

D. 180

Answer: C

Explanation:

 

26f3f48c C7eb 4930 A040 6da878c2d55b

The diagonal (d1) should be maximum of a,b

d1>max(a,b)

The diagonal (d2) should be minimum of a,b

d2<max(a,b)

 

 

A030b4bc 6d69 4296 Ac6c E34e22f73b86

8,15,17  are the sides of a right-angled triangle

so, the area of the parallelogram= the area of the rectangle 

then 8*15=120sqcm

Using lengths of diagonal of a rhombus:

15. what is the perimeter of a rhombus whose diagonal measure 48cm and 14cm?

A. 50cm

B. 25cm

C. 100cm

D. 150cm

E. 200cm

Answer: C

Explanation:

In the rhombus, the diagonals bisect each other and perpendicular to each other.

4dd52591 Bfb9 4ff4 A700 Db3ac736c6bd

Ba71ab9d F19a 48ec 8f12 Ea965b2cbe99

The perimeter of a rhombus=4a

                                              =4(25)=100cm

The area of a regular hexagon:

16. Find the perimeter of a regular hexagon whose area is 24√3 cm.

A. 12cm

B. 24cm

C. 18cm

D. 30cm

E.  36cm

Answer: B

Explanation:

 

 

866dece6 9fee 41ce 9439 90900d21c686

The area of the regular hexagon =24√3

The area of the regular hexagon =6Δ

6Δ=24√3

Δ=4√3

Area of the equilateral triangle=√3/4a²

√3/4a²=4√3

a²=4²

a=4

The perimeter of a regular hexagon=6a

6*4=24cm

Area of a sector

17. the area of the sector of a circle with radius 6cm and an arc of length 12cm is___ cm²

A. 36

B. 48

C. 72

D. 96

E. 108

Answer: A

Explanation:

02513cab Bacb 480f 8196 12dabddd8ae8

The circumference of a circle=2πr

The circumference of a total circle θ=360/π

2πr=2π*6=12π

The small sector and Arc length =12

The Length of the arc α Angle at the center α  Area of the sector

The area of the sector=(θ/360)* πr²= (360/π)*(1/360)*πr²

The area of the sector=r²

where r=6

r²=36cm²

Rolling:

18. The wheel of a cycle has a radius of 15cm during a ride, it made 4000 revolutions along a straight road. How far did the cyclist go?

A. 1200πm

B. 600πm

C. 300πm

D. cannot determine

Answer: A

Explanation:

C8c5ad5f 2170 4c8a 9190 F4d892bb4aa7

Distance traveled in one revolution= Circumference=2Πr

Total distance=N*2Πr

                      =4000*2*Π*r

                     =1200*100*Π

                     =1200Πcm

The path inside a rectangle:

19. A path of width 1m is laid inside a rectangular park of dimensions 8m*20m such that it runs along the boundary. The path is laid with tiles measuring 10cm*10cm and costing Rs. 8 each what is the cost of tiles needed for the path.

A. Rs 41,600

B. Rs 4,160

C. Rs 4,16,000

D. none of the above

Answer: A

Explanation:

Eb9de3e3 D4cc 4b94 9ace 4370d3d0e813

The area of the path=Area of the outer rectangle-Area of the inner rectangle

                                 =8*20-18*6=52m²

                                 =52*100*100cm²

The cost =area *price per area

               = 52*100*100*8/100

               =41600Rs

The path outside a circle

20. A circular garden of radius 35cm is surrounded by a path of width 7m outside it. what is the area of the path(in m²)?

A. 1038

B. 1296

C. 1352

D. 1441

E. 1694

Answer: E

Explanation:

 

9ba379c7 C1ca 4bfc 957e 8475f25b28ad

The total radius of Outer circle= 42m

The area of the path= Area of the outer path - Area of the inner path

                                 =π[42² -35² ]

                                 =22/7(42+35)(42-35)

                                 = (22/7)*77*7

                                 =1694

Practice 30 Top Companies Aptitude Questions with 135 Test Papers
Read 79 times Last modified on Saturday, 11 August 2018 11:14
Login to post comments

Vocabprep Banner

Please key in your e-mail address.

Be up-to-date with the happenings at Conduira!